Triangular Fejér summability of two-dimensional Walsh-Fourier series
نویسندگان
چکیده
منابع مشابه
Almost Everywhere Strong Summability of Two-dimensional Walsh-fourier Series
A BMO-estimation of two-dimensional Walsh-Fourier series is proved from which an almost everywhere exponential summability of quadratic partial sums of double Walsh-Fourier series is derived.
متن کاملMaximal operator of the Fejér means of triangular partial sums of two-dimensional Walsh–Fourier series
It is proved that the maximal operator σ # of the triangular-Fejér-means of a two-dimensional Walsh–Fourier series is bounded from the dyadic Hardy space Hp to Lp for all 1/2 < p ≤ ∞ and, consequently, is of weak type (1,1). As a consequence we obtain that the triangular-Fejér-means σ 2n of a function f ∈ L1 converge a.e. to f . The maximal operator σ # is bounded from the Hardy space H1/2 to t...
متن کاملl1-summability of higher-dimensional Fourier series
It is proved that the maximal operator of the l1-Fejér means of a d-dimensional Fourier series is bounded from the periodic Hardy space Hp(T ) to L p(T ) for all d/(d+1) < p ≤ ∞ and, consequently, is of weak type (1, 1). As a consequence we obtain that the l1-Fejér means of a function f ∈ L1(T ) converge a.e. to f . Moreover, we prove that the l1-Fejér means are uniformly bounded on the spaces ...
متن کاملSummability of Multi-Dimensional Trigonometric Fourier Series
We consider the summability of oneand multi-dimensional trigonometric Fourier series. The Fejér and Riesz summability methods are investigated in detail. Different types of summation and convergence are considered. We will prove that the maximal operator of the summability means is bounded from the Hardy space Hp to Lp, for all p > p0, where p0 depends on the summability method and the dimensio...
متن کاملOn Walsh-fourier Series^)
Every function f(x) which is of period 1 and Lebesgue integrable on [0, 1 ] may be expanded in a Walsh-Fourier series(3), f(x)~ ?.?=n ak\pk(x), where ak=fof(x)ypk(x)dx, k=0, 1, 2, • • • . Fine exhibited some of the basic similarities and differences between the trigonometric orthonormal system and the Walsh system. He identified the Walsh functions with the full set of characters of the dyadic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis Mathematica
سال: 2014
ISSN: 0133-3852,1588-273X
DOI: 10.1007/s10476-014-0201-z